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Names:

School:

INSTRUCTIONS

1. DO NOT OPEN TEST BOOKLET UNTIL INSTRUCTED TO DO SO.

2. Print your team members’ names and school in the spaces provided above.

3. While you can (and should) work with your teammates on the problems, you will
submit only one answer sheet for your whole team. DO NOT submit multiple attempts
for the same problem.

4. This section consists of 4 problems, each worth 10 points. Put all work towards a
solution in the space following the problem statement and the following blank page. If
you use extra sheets of paper, write your names and the problem number at the top
and attach them to this packet.

5. SCORING: You are graded based on the correctness, completeness, and clarity of your
solutions. Excepting numeric answers, all answers must be rigorously justified. Clearly
state any theorems that you use.
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1. In jigsaw sudoku, the goal is to place the digits 1 to 9 in a 9× 9 grid so that each digit
appears exactly once in each row, column, and jigsaw piece (the jigsaw pieces are the
irregular pieces outlined in black). Solve the jigsaw sudoku below.

10 pt for solving (the solution is unique).

3 1 2 5 8 6 7 4 9

9 4 1 8 3 7 2 5 6

2 6 5 9 4 8 3 1 7

7 3 4 2 6 9 1 8 5

1 8 9 7 5 3 6 2 4

6 9 7 4 2 5 8 3 1

5 2 3 6 1 4 9 7 8

8 5 6 1 7 2 4 9 3

4 7 8 3 9 1 5 6 2
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2. Suppose that a triangle has side lengths a, b, c and area A. Prove the following inequal-
ity, and find the conditions for which equality is achieved.

a2 + b2 + c2 ≥ 4
√
3A.

1 pt for showing equality is achieved for equilateral triangle.
9 pt for proof of inequality. Partial credit may be awarded for progress on a proof.

Solution:
There are many ways to prove this, here is one.

(a− b)2 + (b− c)2 + (c− a)2 ≥ 0

a2 + b2 + c2 ≥ ab+ bc+ ca.

Clearly, equality holds in the inequality above if and only if the triangle is equilateral.
Denote by α, β, and γ the angles of the triangle such that

2A = ab sinα = bc sin β = ca sin γ.

Then

ab+ bc+ ca = 2A

(
1

sinα
+

1

sin β
+

1

sin γ

)
.

In the case of equality the the left hand side equals 2A · 6/
√
3 = 4

√
3A. Hence

a2 + b2 + c2 ≥ 4
√
3A. □

Another way: by Heron’s formula and AM-GM

16A2 = (a+ b+ c)(b+ c− a)(a+ c− b)(a+ b− c)

≤ (a+ b+ c)

(
a+ b+ c

3

)3

where equality occurs if and only if a = b = c (by AM-GM). Taking square roots we
get

4A ≤ 1

3
√
3
(a+ b+ c)2

≤ 1

3
√
3
· 3(a2 + b2 + c2) =

1√
3
(a2 + b2 + c2).

where in the last line we used (a+ b+ c)2 ≤ 3(a2+ b2+ c2) by Cauchy-Schwarz. Hence
4A

√
3 ≤ a2 + b2 + c2. □.
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3. We say an integer has a hexary expansion if it can be represented as a sum of terms of
the form 2n · 3m, n,m ≥ 0 such that for every pair of terms, one term is not a divisor
of the other. For example, 19 = 22 + 2131 + 32 is a valid hexary expansion.

Prove or disprove: Every positive integer has a hexary expansion.

1 pt for claiming the statement is true.
9 pt for a complete proof.
For an induction proof, deduct 1 pt for no base case. Partial credit may be awarded
for progress on a proof.

Solution:

We claim every positive integer has a hexary expansion. We prove this by induction.
Clear it is true for 1 = 1, 2 = 21, 3 = 31. Now suppose every integer k ≤ n− 1 has a
hexary expansion for n > 4.

If n is even, then by induction n/2 has a hexary expansion, say a0 + a1 + · · · + am.
Then n = 2a0 + 2a1 + · · ·+ 2am is a valid hexary expansion since 2ai|2aj ⇐⇒ ai|aj.
If n is odd, let 3s be the largest power of 3 such that 3s ≤ n < 3s+1, s ≥ 1. If n is a
power of 3 then we’re done, so we can assume n− 3s > 0. By induction we can write
a hexary expansion (n− 3s)/2 = a0 + a1 + · · ·+ am.
We claim n = 2a0 + · · · + 2am + 3s is a hexary expansion for n. Clearly, 2ai ∤ 3s,
0 ≤ i ≤ m. Moreover, 2ai < n − 3s < 3s+1 − 3s = 2 · 3s so ai < 3s . So 3s ∤ ai and
therefore 3s ∤ 2ai. This proves the claim and completes the proof. □
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4. (a) n2 cells are arranged in a n × n square grid. Initially, some cells are infected
and the rest are healthy. After one minute, every healthy cell with at least two
infected neighbors (horizontally or vertically) becomes infected. Infected cells
stay infected. This process continues until the infection cannot reach more cells.
Find, with proof, the minimum number of initially infected cells that guarantees
all cells will eventually become infected.

(b) Now consider n3 cells in a n × n × n cube. The infection spreads the same way,
but now cells can have neighbors in six directions. Find the minimum number of
initial infected cells that guarantees all cells will eventually become infected.

for both (a) and (b):
1 pt for getting the minimum number and showing it suffices
4 pt for complete proof that the minimum number is necessary

Solution:
For a n × n grid the minimum number is n . There are many initial configurations
that show this number suffices, for example the n diagonal cells. To prove that n is
necessary, we view the cells as squares. Let S be a set of initially infected squares. The
number of edges on the boundary of S cannot increase when S infects a new square,
as the newly infected square shares at least 2 edges with the boundary of S. Hence
the inital boundary must be at least 4n, the boundary of the whole grid. The number
of boundary edges is maximized S is union of squares that are not neighbors. We
conclude that |S| ≥ n in order for the whole grid to be infected.

For a n× n× n cube the minimum number is ⌈3n/2⌉ . In what follows we will index

the cells by integer coordinates (x, y, z), where 0 < x, y, z ≤ n. We can construct an
initial set of infected cells S like so: S contains the diagonal cells of the z = 1 grid:
(1, 1, 1), (2, 2, 1), . . . (n, n, 1), in addition to every other cell of the x = y = 1 row,

� (1, 1, 1), (1, 1, 3) . . . , (1, 1, n
2
), (1, 1, n

2
+ 1) . . . , (1, 1, n) if n is even,

� (1, 1, 1), (1, 1, 3) . . . , (1, 1, n+1
2
) . . . , (1, 1, n) if n is odd.

S contains exactly ⌈3n/2⌉ cells. It’s easy to see that the x = y = 1 row and the z = 1
grid will eventually be completely infected, and then infect the whole cube.

To show that ⌈3n/2⌉ cells are necessary, we use another invariant. If B is a box of
cells, define M(B) to be the sum of its side lengths minus 1, i.e.

M([a1, a2)× [b1, b2)× [c1, c2)) = (a2 − a1) + (b2 − b1) + (c2 − c1)− 1.

Note that for a union of boxes we have the sharp inequality M(B1 ∪B2) ≤ M(B1) +
M(B2). We extend M to a function on arbitrary set of cells S by defining M(S) to be
the minimum of the sum

∑
iBi over all possible ways to write S as the union of boxes

Bi.
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Also, for two boxes B1, B2 denote by B1 ∨ B2 the minimum box that contains them
both. Note that if B1 and B2 are infected and the distance between them is less than
3, then B1 ∨B2 will be infected. Morever M(B1 ∨B2) ≤ M(B1) +M(B2).

With this preparation we can prove the original claim. Let B be the n × n × n cube
and let S ⊆ B be a set that can infect B. Write S = B1 ∪B2 ∪ · · · ∪Bm as the union
of boxes such that M(S) is minimal. If m = 1 then S = B and we are done, so assume
m ≥ 2. There must be some two boxes Bi, Bj that are distance at most than 2 apart,
otherwise S cannot infect more cells. Let S1 = S ∪ (Bi ∨Bj). Then

M(S) ≥ M(Bi ∨Bj) +
∑
k ̸=i,j

Bk ≥ M(S1).

Continuing in this way, we obtain S ⊂ S1 ⊆ S2 ⊆ · · · ⊆ B, such that M(S) ≥
M(S1) ≥ M(S2) ≥ · · · ≥ M(B). Since M(S) ≤ 2|S| and M(B) = 3n− 1, we conclude
that 2|S| ≥ 3n− 1, so |S| ≥ ⌈3n/2⌉. □
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