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INSTRUCTIONS

1. DO NOT OPEN TEST BOOKLET UNTIL INSTRUCTED TO DO SO.

2. Print your name, school, and school ID number in the spaces provided above.

3. This section consists of 4 problems, each worth 25 points. These problems are “essay” style questions.
You should put all work towards a solution in the space following the problem statement. If you use
extra sheets of paper, write your name and the problem number at the top and attach them to this
packet.

4. SCORING: You are graded based on the correctness, completeness, and clarity of your solutions. All
arguments must be made with mathematical rigor. Clearly state any theorems that you use. Unjustified
answers will not receive points.

5. No aids are permitted other than scratch paper, graph paper, rulers, compass, protractors, and erasers.
No calculators, smartwatches, or computing devices are allowed. No problems on the test will require
the use of a calculator.

6. When your proctor gives the signal, begin working on the problems. You will have 75 minutes to
complete the test.
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1. Consider a sphere of radius r. A great circle is a circle on the surface of the sphere with radius r. A lune
is the area on the surface of the sphere bound between two half great circles that meet at antipodal
points (the shaded part in the figure).

(a) Express the area of a lune with internal angle θ in terms of r and θ.

(b) A spherical triangle is the area on the surface of a sphere bound by three arcs of great circles
that intersect pairwise (so it has 3 sides and 3 vertices). Let α, β and γ be the internal angles of
a spherical triangle. Express the area of the spherical triangle in terms of r, α, β, and γ.

Figure 1: A lune with internal angle θ

Proof. (a) The lune is a
θ

2π
fraction of the whole surface area, which is 4πr2. Hence the area of the

lune is 2θr2.

(b) Denote the spherical triangle 4ABC. Consider the 3 lunes `1, `2, `3 with internal angles α, β,
and γ, with vertices A,B, and C, resp. Let A′, B′, and C ′ be the antipodal points of A,B, and C,
respectively. 4A′B′C ′ is congruent to 4ABC and the corresponding lunes `′1, `

′
2, `
′
3 with vertices

at A′, B′, and C ′ are congruent to the lunes with vertices at A,B, and C. These 6 lunes cover the
whole sphere, so counting overlaps we get

4πr2 = |`1|+ |`2|+ |`2| − 2|4ABC|+ |`′1|+ |`′2|+ |`′3| − 2|4ABC|
= 4r2(α+ β + γ)− 4|4ABC|.

Hence |4ABC| = r2(α+ β + γ − π).

Grading. (a) – 2 pts for correct formula. Little justification is needed.
(b) – 8 pts
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2. For n ≥ 1, let

Mn =

(
1 1
1 0

)n

=

(
1 1
1 0

)(
1 1
1 0

)
· · ·
(

1 1
1 0

)
︸ ︷︷ ︸

n times

.

Recall that

(
a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

(a) The trace of a matrix

(
a b
c d

)
is defined to be a + d. Let L0 = 2 and Ln = traceMn for n ≥ 1.

Calculate Ln for n = 1, 2, 3, 4, 5.

(b) Define F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0. Prove Ln = Fn−1 + Fn+1 for n ≥ 1.

(c) Find the limit

lim
n→∞

Ln

Fn

Proof. (a) 1, 3, 4, 7, 11

(b) We claim that

Mn =

(
Fn+1 Fn

Fn Fn−1

)
for all n ≥ 1.

The n = 1 case is true. For n > 1,

Mn+1 =

(
Fn+1 Fn

Fn Fn−1

)(
1 1
1 0

)
=

(
Fn+1 + Fn Fn+1

Fn + Fn−1 Fn

)
=

(
Fn+2 Fn+1

Fn+1 Fn

)
.

The claim is proved by induction. Therefore traceMn = Fn+1 + Fn−1.

(c) Divide the recurrence relation for Fn by Fn+1 to get

lim
n→∞

Fn+2

Fn+1
= lim

n→∞
1 +

Fn

Fn+1
.

Assuming the limits exist1 and equals L, the equation becomes L = 1 + 1/L. The admissible

solution is the positive one, L = ϕ :=
1 +
√

5

2
. Divide the equation from (b) by Fn and take the

limit as n→∞ to get

lim
n→∞

Ln

Fn
=

1

ϕ
+ ϕ =

√
5.

Grading. (a) – 1 pt for correct values.
(b) – 4 pts. Formal induction is not necessary.
(c) – 5 pts. Proof that the limit exists is not necessary. Proof by citing other identities (Binet’s formula,
Cassini’s identity) is also possible.

1To prove it exists, note that the sequence {Fn+1/Fn}n≥0 is bounded above by 2 and monotonically increasing.
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3. On Mars, Martian students learn about M, the Martian numbers. Let α, β, γ ∈ M be any Martian
numbers. Multiplication of Martian numbers, written as ∗, satisfies the following rules:

(R1) If β ∗ α = β ∗ γ then α = γ

(R2) (α ∗ β) ∗ γ = α ∗ (β ∗ γ)

(R3) There is a special Martian number µ such that α3 = µ ∗ α ∗ µ for all α (here α3 = α ∗ α ∗ α).

Note that Martian multiplication is not necessarily commutative (do not assume α ∗ β = β ∗ α).
Prove the following statements:

(a) α3 = α for all α ∈M.

(b) e = µ2 is the identity element. That is, e ∗ α = α ∗ e = α for all α ∈M.

(c) Martian multiplication is commutative. That is α ∗ β = β ∗ α for all α, β ∈M.

Proof. (a) Substitute µ ∗ α for α in (R3) to get

(µ ∗ α) ∗ (µ ∗ α) ∗ (µ ∗ α) = µ2 ∗ α ∗ µ.

Using (R1) and (R2) we get α ∗ (µ ∗ α ∗ µ) ∗ α = µ ∗ α ∗ µ. Substituting, µ ∗ α ∗ µ = α3 we have

α ∗ α3 ∗ α = α3.

Cancelling α2 using (R1) we get α3 = α for all α ∈M.

(b) Using µ3 = µ we have µ3 ∗ (α ∗ µ) = µ ∗ (α ∗ µ) and hence µ2 ∗ (α ∗ µ) = (α ∗ µ) by (R1) again.
Substitute for µ ∗ α ∗ µ using (R3) we get µ ∗ α3 = µ ∗ α. By (a), this reduces to µ ∗ α = µ ∗ α, so
µ commutes with all Martian numbers. We get

µ2 ∗ α = µ ∗ (α ∗ µ) = α3 = (µ ∗ α) ∗ µ = α ∗ µ2.

Hence µ2 ∗ α = α3 = α = α ∗ µ2, which is what we wanted to show.

(c) We can now cancel α in (a) to get α2 = e, where e = µ2 is the identity. This shows each α has an
inverse α−1, and α−1 = α (this makes M a group). So if α, β ∈M

α ∗ β = (α ∗ β)−1 = β−1 ∗ α−1 = β ∗ α.

Grading. (a) – 3 pts.
(b) – 4 pts. Award 2 pts partial credit for proving µ commutes with all α ∈M.
(c) – 3 pts

Award no points if proof uses commutativity or other property not derived from (R1)-(R3).
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4. Remarkably, m2 + m + 41 is a prime number for m = 0, 1, 2, . . . , 39. Let n ≥ 2 be an integer. Show

that if m2 + m + n is prime for all integers 0 ≤ m ≤
√
n

3
, then m2 + m + n is also prime for all

0 ≤ m ≤ n− 2.

Proof. Assume for sake of contradiction that there is a smallest integer m with
√
n/3 < m ≤ n − 2

such that m2 + m + n is not prime. Let p be its smallest prime divisor. We must have p ≤ 2m, for
otherwise p > 2m implies

m2 +m+ n ≥ (2m+ 1)2 = 3m2 +m2 + 3m+m+ 1

≥ n+m2 + 3m+ 1

> m2 +m+ n

which is absurd. Now we can write p = m− k if p ≤ s or p = m+ k + 1 if p > s, for some 0 ≤ k < s.
In either case, we have the factorization

m2 +m+ n− (k2 + k + n) = (m− k)(m+ k + 1).

Since p divides the right hand side as well as m2 + m + n, it follows that p|(k2 + k + n). Notice that
m + k + 1 < n − 1 + k + 1 < k2 + k + n and m − k < n − k < k2 + k + n so p 6= k2 + k + n. Hence
k2 + k + 1 is not prime and k < m, which contradicts our assumption that m is minimal.

Note that when n = m− 1, m2 +m+ n = (m+ 1)2 so the bound is sharp.

Grading. 10 pts for complete proof.
Award maximum 6 pts partial credit for substantial progress on proof by contradiction or otherwise.
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