1. On an alien planet, children learn the operation of μl tiplication, defined by

$$
x \otimes y=\frac{x y}{x+y+1}
$$

for all x, y non-negative real numbers.
(a) Is \otimes a commutative operation?
(b) Is \otimes an associative operation?
(c) Does \otimes have an identity element?

That is, does there exist $e>0$ such that $x \otimes e=x$ for all $x \geq 0$?

Solution: \otimes is clearly commutative because regular multiplication and addition are. It is not associative because calculation shows

$$
x \otimes(y \otimes z)=\frac{x y z(y+z+1)}{x+y+z+x y+y z+x z+1} \neq \frac{x y z(x+y+1)}{x+y+z+x y+y z+x z+1}=(x \otimes y) \otimes z
$$

If an identity element exist it must satisfy $x \otimes e=x$ for all $x \geq 0$, but

$$
x \otimes e=\frac{x e}{x+e+1}=x
$$

reduces to $x e=x^{2}+x e+x$, and hence $0=x(x+1)$ which is only solvable for $x=0$ and $x=-1$. Therefore no identity element exists.

Remark. It is also acceptable to provide a single counterexample for (b) or (c), such as $(1 \otimes 2) \otimes 3 \neq 1 \otimes(2 \otimes 3)$
2. Isaac N. has a pile of 2019 apples. Each minute he chooses a pile with more than 1 apple, eats an apple from this pile, then divides the remaining pile into 2 smaller, not necessarily equal piles.
(a) Is it possible for Isaac to make every pile have exactly 6 apples in a finite amount of time?
(b) Suppose Isaac instead started with k apples. For which k is the answer to (a) yes?

Solution: The answer is $n o$ for 2019 apples. The key observation is that every time Isaac increases the number of piles by 1 , he decreases the number of apples by 1 . Therefore $S:=\#$ apples $+\#$ piles is invariant. Suppose there are n piles each with 6 apples, then $S=n+6 n=7 n$. But we have $S=2020$ which is not divisible by 7 , a contradiction.
By the previous remarks k must be divisible by 7 . Isaac can reach this state by repeatedly making piles of 6 apples since he is decreasing the main pile by 7 each minute.
3. Let $\{\sigma(1), \sigma(2), \ldots \sigma(84)\}$ be a permutation of $\{1,2, \ldots, 84\}$ such that

$$
|\sigma(1)-1|=|\sigma(2)-2|=|\sigma(3)-3|=\cdots=|\sigma(84)-84|>0
$$

That is, the quantities $|\sigma(i)-i|$ are positive and equal for all $i=1,2, \ldots 84$.
Find the number of such permutations.

Solution: We claim that σ is made up of only 2-cycles, that is, $\sigma(i)=j \Longrightarrow \sigma(j)=i$.
To this end, assume for sake of contradiction that $\sigma(i)=j$ but $\sigma(j) \neq i$ for some $i, j \in\{1, \ldots, 84\}$. First suppose $j>i$. The case $i<j$ is handled identically. Let $k=j-i$ so that

$$
k=|\sigma(i)-i|=|\sigma(j)-j|
$$

Since $\sigma(j) \neq i$ by hypothesis, we must have $\sigma(j)=i+2 k$ i.e. $\sigma(i+k)=i+2 k$. Similarly,

$$
k=|\sigma(i+2 k)-(i+2 k)|
$$

We cannot have $\sigma(i+2 k)=i+k$ since σ is a bijection. Hence $\sigma(i+2 k)=i+3 k$. Continuing this argument we get that $\sigma(i+n k)=i+(n+1) k$ for each n. However this is impossible since $i+(n+1) k$ is outside the range of σ for some $i+n k \in\{1, \ldots, 84\}$. We conclude that σ is made of 2 -cycles. In particular, it is an involution with no fixed points, meaning $\sigma(\sigma(i))=i$ and $\sigma(i) \neq i$.
Now suppose we choose k so that

$$
\sigma(1)-1=\sigma(2)-2=\cdots=\sigma(k)-k=k
$$

Then we must have $\sigma(k+1)=1, \sigma(k+2)=2, \ldots \sigma(2 k)=k$. This choice of k determines σ on the first $2 k$ elements of $\{1, \ldots, 84\}$. The same argument shows that $\sigma(2 k+1)=3 k+1, \sigma(2 k+2)=$ $3 k+2, \ldots, \sigma(3 k)=4 k$ from which the values of the next $2 k$ elements are determined. Thus $\{1, \ldots, 84\}$ is partitioned into $2 k$ subsets, from which we conclude that k must divide 42 .
Therefore there are 3 such permutations.
4. $A B C$ and $B C D$ are equilateral triangles sharing the side $B C$. A line passing through D intersects $\overleftrightarrow{A C}$ at M and $\overleftrightarrow{A B}$ at N. Prove that the acute angle between the lines $\overleftrightarrow{B M}$ and $\overleftrightarrow{C N}$ is $\pi / 3$

Solution: By scaling and rotating we may place the figure in the complex plane so that $B=0$, $C=1, A=e^{i \pi / 3}$, and $D=e^{-i \pi / 3}$. Then $N=t e^{i \pi / 3}$ for some $t \in \mathbb{R}$.
The parametrization of the line $N D$ is

$$
z=\lambda \cdot t e^{i \pi / 3}+(1-\lambda) e^{-i \pi / 3}, \quad \lambda \in \mathbb{R}
$$

and the similarly for $A C$ we have

$$
z=\gamma e^{i \pi / 3}+(1-\gamma), \quad \gamma \in \mathbb{R}
$$

We then calculate M by solving

$$
\lambda t \frac{1+i \sqrt{3}}{2}+(1-\lambda) \frac{1-i \sqrt{3}}{2}=\gamma \frac{1+i \sqrt{3}}{2}+(1-\gamma)
$$

By equating real and imaginary parts this reduces to solving

$$
\begin{aligned}
& \lambda t+(1-\lambda)=-\gamma+2(1-\gamma) \\
& \lambda t-(1-\lambda)=\gamma
\end{aligned}
$$

from which we obtain $\lambda=1 / t$. Thus M is at $e^{i \pi / 3}+(1-1 / t) e^{-i \pi / 3}$. The desired angle is then the argument of the quotient

$$
\frac{e^{i \pi / 3}+(1-1 / t) e^{-i \pi / 3}}{t e^{i \pi / 3}-1}=\frac{\left(e^{i \pi / 3}+e^{-i \pi / 3}\right)-(1 / t) e^{-i \pi / 3}}{t e^{i \pi / 3}-1}=\frac{1-(1 / t) e^{-i \pi / 3}}{t e^{i \pi / 3}-1}=\frac{1}{t} e^{-i \pi / 3}
$$

which is $\pi / 3$ as claimed.
Remark. A more prescient solution places the coordinates of A, B, C, D at $i \sqrt{3},-1,1$, and $-i \sqrt{3}$ respectively.

